我室通过树轮14C建立识别城市碳达峰的新方法
我国宣布要在2030年之前实现碳达峰、2060年之前实现碳中和。碳达峰是碳中和的前提与基础,直接影响着为实现碳中和目标而设计怎样的路线图。因此,识别是否达峰与何时达峰就非常重要。通常,我们通过“自下而上”的统计方法来获得碳排放量,进而判断是否达峰;但统计方法有不确定性,在城市尺度可达50–250%(Ciais et al., 2010; Gately and Hutyra, 2017; Gurney et al., 2021)。城市是碳排放的热点,超过70%的碳排放集中在城市区域;因此城市是实现双碳目标的核心与关键。那么,除了统计方法,如何来判断一个城市的碳排放是否达峰?
放射性碳同位素(14C)是定量区分大气CO2化石来源与生物来源最准确的示踪剂,可用于示踪碳排放。研究表明,近20多年大气Δ14CO2值的年际变化主要受碳排放影响,与其有较好的线性关系(Niu et al., 2021)。树木利用光合作用吸收大气中的CO2, 进而将大气14CO2的年际变化保存到年轮中。因此,树轮Δ14C序列的年际变化可以反应碳排放量的变化。
我室牛振川研究员和团队利用北京和西安市树轮Δ14C近20年序列的年际变化,通过扣除本底14C的影响,发现北京市当地Δ14C的最低值在2010年,西安市当地Δ14C的最低值在2013年,这与统计数据显示的北京市和西安市的碳达峰时间相吻合。此外,该研究还通过分析树轮Δ14C年际差变化的转折点,进一步确定了碳达峰时间,也与清单的碳达峰时间相吻合。这些吻合表明了此方法的可行性。
该研究通过分析树轮Δ14C变化,建立了一种独立于统计方法的“自上而下”的观测方法来识别城市碳达峰,这可服务于我国当前的碳达峰评估。研究成果发表于环境领域的著名期刊《Environmental Science & Technology》。研究受国家自然科学基金(42173082、42330114)、中国科学院先导专项(XDA23010302)和陕西省自然科学基础研究计划(2024JC-JCQN-34)的共同资助。
Zhenchuan Niu*, Weijian Zhou, Yunfei Huang, Sen Wang, Guiqian Zhang, Xue Feng, Xuefeng Lu, Mengni Lyu,
and Jocelyn C. Turnbull. Identification of Urban Carbon Emission Peaks through Tree-ring 14C.
Environmental Science & Technology, 2024,58, 17313–17319
图1 北京和西安市2000−2019年树轮Δ14C、Δ14Clocal和碳排放量的变化。绿点代表本底Δ14C值(Hua et al., 2022);黑色空心点代表单个树轮Δ14C值;蓝点代表树轮Δ14C的多点平均值;青色点代表碳排放量(Shan et al., 2022);红色点代表峰值。
图2 树轮Δ14C和本底Δ14C(Hua et al., 2022)在不同时期的平均年际下降速率(即斜率, 图中的数字),图中红点代表转折点。